中國人民大學(xué)統(tǒng)計學(xué)院邀請賓夕法尼亞州立大學(xué)統(tǒng)計系薛凌洲作了題為“Sufficient Forecasting Using Factor Models(充分利用預(yù)測模型的因子)”的講座。中國人民大學(xué)統(tǒng)計學(xué)院應(yīng)用統(tǒng)計學(xué)科布局不僅深入經(jīng)濟(jì)社會發(fā)展領(lǐng)域和保險精算與金融風(fēng)險管理領(lǐng)域,而且已經(jīng)擴展到社會科學(xué)的許多領(lǐng)域如法律、新聞、政治學(xué)、倫理學(xué)、教育學(xué)、心理學(xué)、文獻(xiàn)計量等領(lǐng)域之中,展示應(yīng)用統(tǒng)計量化社會科學(xué)研究的重要作用。
當(dāng)存在大量預(yù)測的和可能的非線性效應(yīng)我們考慮預(yù)測的單一的時間序列。維首先通過高維(近似)的因素由主成分分析模型來實現(xiàn)降低。使用提取的因素,我們開發(fā)名為足夠預(yù)測了一種新的預(yù)測方法,它提供了一套充分的預(yù)測指標(biāo),從高維預(yù)測推斷的,以提供更多的預(yù)測能力。投影主成分分析將被用于增強的推斷因素精度被假定一個半?yún)?shù)(近似)因子模型時。我們的方法也可以適用于使用提取因子剖足夠回歸。 {足夠預(yù)測和深學(xué)習(xí)架構(gòu)之間的連接被明確說明。}的充分的預(yù)測正確估計的潛在因素的投影索引即使是在一個非參數(shù)預(yù)測功能的存在。所提出的方法通過縮合通過因子模型的剖信息擴展了足夠的尺寸減少到高維制度。我們推導(dǎo)出對這些投影方向以及足夠的預(yù)測指數(shù)的估算值跨越的中央子空間的估算漸近性質(zhì)。進(jìn)一步的研究表明估計的因素移動靶的多元回歸自然的方法產(chǎn)生,實際上就屬于這一核心子空間的線性估計。我們的方法與理論預(yù)測允許的數(shù)量比觀測的數(shù)量較大。我們終于證明了足夠的預(yù)測在兩個模擬研究線性預(yù)測和預(yù)測宏觀經(jīng)濟(jì)變量的實證研究改進(jìn)。
原文:We consider forecasting a single time series when there is a large number of predictors and a possible nonlinear effect. The dimensionality was first reduced via a high-dimensional (approximate) factor model implemented by the principal component analysis. Using the extracted factors, we develop a novel forecasting method called the sufficient forecasting, which provides a set of sufficient predictive indices, inferred from high-dimensional predictors, to deliver additional predictive power. The projected principal component analysis will be employed to enhance the accuracy of inferred factors when a semi-parametric (approximate) factor model is assumed. Our method is also applicable to cross-sectional sufficient regression using extracted factors. {The connection between the sufficient forecasting and the deep learning architecture is explicitly stated.} The sufficient forecasting correctly estimates projection indices of the underlying factors even in the presence of a nonparametric forecasting function. The proposed method extends the sufficient dimension reduction to high-dimensional regimes by condensing the cross-sectional information through factor models. We derive asymptotic properties for the estimate of the central subspace spanned by these projection directions as well as the estimates of the sufficient predictive indices. We further show that the natural method of running multiple regression of target on estimated factors yields a linear estimate that actually falls into this central subspace. Our method and theory allow the number of predictors to be larger than the number of observations. We finally demonstrate that the sufficient forecasting improves upon the linear forecasting in both simulation studies and an empirical study of forecasting macroeconomic variables.
近年來,越來越多的職場人士選項攻讀在職研究生提升自己,進(jìn)而在職場中獲得更多升職加薪的機會。上海財經(jīng)大學(xué)人力資源管理在職研究生主要有面授班/網(wǎng)絡(luò)班兩種授課方式可選,其中面授班均在學(xué)校上課,雙休日其中一天授課,法定節(jié)假日和寒暑假不上課;網(wǎng)絡(luò)班即網(wǎng)絡(luò)遠(yuǎn)程學(xué)習(xí),學(xué)員通過直播課堂、錄播回放、在線答疑等方式實現(xiàn),學(xué)員可自由安排學(xué)習(xí)時間,不受地域限制。
上海財經(jīng)大學(xué)在職研究生采取資格審核方式入學(xué),無需入學(xué)資格考試,免試入學(xué)。在職研究生報名條件是:本科學(xué)歷、并獲得學(xué)士學(xué)位后滿三年(原專業(yè)不限);雖無學(xué)士學(xué)位但已獲得碩士或博士學(xué)位者。滿足條件的學(xué)員全年均可向院校提交報名申請材料進(jìn)行報名,完成全部課程學(xué)習(xí)并通過考核可獲得結(jié)業(yè)證書;后期結(jié)業(yè)后可報名參加申碩考試,只考外國語和學(xué)科綜合2門,滿分均為100分,學(xué)員達(dá)到60分及格即可通過考試,學(xué)員通過考試并完成論文答辯后即可獲得碩士學(xué)位證書。
詳情>