蘇州大學(xué)數(shù)學(xué)科學(xué)學(xué)院邀請(qǐng)美國(guó)加州大學(xué)戴維斯分校夏青嵐教授作了題為“Ramified optimal transportation and its applications(網(wǎng)狀最佳運(yùn)輸及其應(yīng)用)”的講座。蘇州大學(xué)數(shù)學(xué)科學(xué)學(xué)院現(xiàn)有數(shù)學(xué)一級(jí)學(xué)科博、碩士學(xué)位授予點(diǎn)(下設(shè)基礎(chǔ)數(shù)學(xué)、應(yīng)用數(shù)學(xué)、計(jì)算數(shù)學(xué)、概率論與數(shù)理統(tǒng)計(jì)、運(yùn)籌學(xué)與控制論、數(shù)學(xué)教育六個(gè)二級(jí)學(xué)科博、碩士點(diǎn)),統(tǒng)計(jì)學(xué)一級(jí)學(xué)科博、碩士學(xué)位授予點(diǎn)(下設(shè)數(shù)理統(tǒng)計(jì)、應(yīng)用概率、金融風(fēng)險(xiǎn)管理、生物統(tǒng)計(jì)、經(jīng)濟(jì)統(tǒng)計(jì)五個(gè)二級(jí)學(xué)科博、碩士點(diǎn));應(yīng)用統(tǒng)計(jì)、金融工程、學(xué)科教育(數(shù)學(xué))三個(gè)專業(yè)碩士學(xué)位點(diǎn)。講座的主要內(nèi)容是:
最佳的運(yùn)輸問(wèn)題的目標(biāo)是尋求從源目標(biāo)的具有成本效益的運(yùn)輸。在數(shù)學(xué)中,有至少兩個(gè)非常重要的類型優(yōu)化交通:蒙赫 - 坎托羅維奇問(wèn)題,分枝最佳交通工具。在這次報(bào)告中,我會(huì)給出一個(gè)簡(jiǎn)要介紹了理論的網(wǎng)狀最佳運(yùn)輸通道.一個(gè)動(dòng)機(jī)的理論來(lái)源于自然界中發(fā)現(xiàn)的分支結(jié)構(gòu)的研究。許多生命系統(tǒng),如樹(shù)木,在葉中脈,以及動(dòng)物心血管/循環(huán)系統(tǒng)展覽分支結(jié)構(gòu),為主要非生命系統(tǒng),如河道網(wǎng)絡(luò),鐵路,航空網(wǎng)絡(luò),電力供應(yīng)和通信網(wǎng)絡(luò).為什么做自然和工程師都喜歡這些枝狀結(jié)構(gòu)?什么是對(duì)非分支結(jié)構(gòu),這些分支結(jié)構(gòu)的優(yōu)勢(shì)是什么?這些問(wèn)題部分激勵(lì)我們?nèi)ヌ剿髌浔澈蟮臄?shù)學(xué)。在這次演講中,我將討論如何建立一個(gè)數(shù)學(xué)理論的這一普遍現(xiàn)象的最佳傳送路徑條款。兩個(gè)概率的措施之間的最優(yōu)傳送路徑可以被看作是在概率測(cè)度的空間的短程線。在這次演講中,我也將調(diào)查多學(xué)科領(lǐng)域的理論,如數(shù)學(xué)生物學(xué)一些應(yīng)用(如動(dòng)力形成樹(shù)的葉子),度量幾何結(jié)構(gòu)(例如,在quasimetric空間測(cè)地問(wèn)題),分形幾何(如修改后的彌散限制聚集),幾何分析(的措施,如運(yùn)輸尺寸)和數(shù)理經(jīng)濟(jì)學(xué)(如網(wǎng)狀最優(yōu)分配問(wèn)題)。
The optimal transportation problem aims at finding a costefficient transport from sources to targets. In mathematics, there areat least two very important types of optimal transportation:Monge-Kantorovich problem and ramified optimal transportation. In thistalk, I will give a brief introduction to the theory of ramifiedoptimal transportation.One motivation of the theory comes from the study of the branching structures found in nature. Many living systems such as trees, the veins on a leaf, as well as animal cardiovascular/circulatory systems exhibit branching structures, as domany non-living systems such as river channel networks, railways,airline networks, electric power supply and communication networks.Why do nature and engineers both prefer these ramifying structures? What are the advantages of these branching structures over non-branching structures? These questions partially motivates us to explore the mathematics behind them. In this talk, I will talk about how to set up a mathematical theory for this general phenomenon in terms of optimal transport paths. An optimal transport path between two probability measures can be viewed as a geodesic in the space of probability measures. In this talk, I will also survey some applications of the theory in multidisciplinary areas such as mathematical biology (e.g. the dynamical formation of tree leaves),metric geometry (e.g. the geodesic problems in quasimetric spaces),fractal geometry (e.g. the modified diffusion-limited aggregation),geometric analysis (e.g. transport dimension of measures) and mathematical economics (e.g. ramified optimal allocation problem).
近年來(lái),越來(lái)越多的職場(chǎng)人士選項(xiàng)攻讀在職研究生提升自己,進(jìn)而在職場(chǎng)中獲得更多升職加薪的機(jī)會(huì)。上海財(cái)經(jīng)大學(xué)人力資源管理在職研究生主要有面授班/網(wǎng)絡(luò)班兩種授課方式可選,其中面授班均在學(xué)校上課,雙休日其中一天授課,法定節(jié)假日和寒暑假不上課;網(wǎng)絡(luò)班即網(wǎng)絡(luò)遠(yuǎn)程學(xué)習(xí),學(xué)員通過(guò)直播課堂、錄播回放、在線答疑等方式實(shí)現(xiàn),學(xué)員可自由安排學(xué)習(xí)時(shí)間,不受地域限制。
上海財(cái)經(jīng)大學(xué)在職研究生采取資格審核方式入學(xué),無(wú)需入學(xué)資格考試,免試入學(xué)。在職研究生報(bào)名條件是:本科學(xué)歷、并獲得學(xué)士學(xué)位后滿三年(原專業(yè)不限);雖無(wú)學(xué)士學(xué)位但已獲得碩士或博士學(xué)位者。滿足條件的學(xué)員全年均可向院校提交報(bào)名申請(qǐng)材料進(jìn)行報(bào)名,完成全部課程學(xué)習(xí)并通過(guò)考核可獲得結(jié)業(yè)證書;后期結(jié)業(yè)后可報(bào)名參加申碩考試,只考外國(guó)語(yǔ)和學(xué)科綜合2門,滿分均為100分,學(xué)員達(dá)到60分及格即可通過(guò)考試,學(xué)員通過(guò)考試并完成論文答辯后即可獲得碩士學(xué)位證書。
詳情>