華東師范大學(xué)地理科學(xué)學(xué)院邀請康蕾(Emily Lei Kang)教授作了一場題為“Statistical Models for Large Spatial and Spatio-Temporal Datasets(大空間和時空數(shù)據(jù)集的統(tǒng)計模型)”的講座。地理科學(xué)學(xué)院是我國最早具有地理學(xué)一級學(xué)科博士點(diǎn)授予權(quán)的單位之一,是我國首批博士后流動站建站單位之一,也是我國最早2個具有自然地理學(xué)重點(diǎn)學(xué)科的單位之一。講座的主要內(nèi)容是:
隨著現(xiàn)代技術(shù),如地理信息系統(tǒng)(GIS)和全球定位系統(tǒng)(GPS)常規(guī)識別在當(dāng)今各種學(xué)科的地理坐標(biāo),科學(xué)家和研究人員的發(fā)展能夠獲得地理編碼數(shù)據(jù)以前所未有的,而這樣的數(shù)據(jù)越來越高維在觀察位置的數(shù)量方面(以及隨著時間的推移)。對于非常大的和大規(guī)模數(shù)據(jù)集的空間數(shù)據(jù)是具有挑戰(zhàn)性的,因?yàn)閿?shù)據(jù)集的大小導(dǎo)致計算最佳空間預(yù)測,如克里格問題。此外,當(dāng)將數(shù)據(jù)集收集在大的空間域,感興趣的關(guān)聯(lián)的空間過程通常表現(xiàn)非平穩(wěn)行為超過該域,和非平穩(wěn)空間相關(guān)結(jié)構(gòu)的柔性家族優(yōu)選在統(tǒng)計模型。我先介紹一下統(tǒng)計挑戰(zhàn)及其在分析大型或巨型空間和時空數(shù)據(jù)的發(fā)展,然后談?wù)勔恍┪乙呀?jīng)在這個領(lǐng)域做了近期工作。具體來說,我將討論(1)預(yù)測和降尺度統(tǒng)計方法; (2)進(jìn)行數(shù)據(jù)融合的統(tǒng)計方法。這些方法的應(yīng)用也將被討論。
原文:With the development of modern technologies such as Geographical Information Systems (GIS) and Global Positioning Systems (GPS) routinely identifying geographical coordinates, scientists and researchers in a variety of disciplines today have access to geocoded data as never before, and such data become increasingly high-dimensional in terms of the number of observed locations (and over time). Spatial statistics for very large and massive datasets is challenging, since the size of the dataset causes problems in computing optimal spatial predictors, such as kriging. In addition, when a dataset is collected on a large spatial domain, the associated spatial process of interest typically exhibits nonstationary behavior over that domain, and a flexible family of nonstationary spatial dependence structure is preferred in statistical models. I will first introduce the statistical challenges and their developments in analyzing large or massive spatial and spatio-temporal data, then talk about some recent work I have done in this field. Specifically, I will discuss (1) statistical methods for prediction and downscaling; (2) statistical methods for data fusion. Applications of these methods will also be discussed.
近年來,越來越多的職場人士選項(xiàng)攻讀在職研究生提升自己,進(jìn)而在職場中獲得更多升職加薪的機(jī)會。上海財經(jīng)大學(xué)人力資源管理在職研究生主要有面授班/網(wǎng)絡(luò)班兩種授課方式可選,其中面授班均在學(xué)校上課,雙休日其中一天授課,法定節(jié)假日和寒暑假不上課;網(wǎng)絡(luò)班即網(wǎng)絡(luò)遠(yuǎn)程學(xué)習(xí),學(xué)員通過直播課堂、錄播回放、在線答疑等方式實(shí)現(xiàn),學(xué)員可自由安排學(xué)習(xí)時間,不受地域限制。
上海財經(jīng)大學(xué)在職研究生采取資格審核方式入學(xué),無需入學(xué)資格考試,免試入學(xué)。在職研究生報名條件是:本科學(xué)歷、并獲得學(xué)士學(xué)位后滿三年(原專業(yè)不限);雖無學(xué)士學(xué)位但已獲得碩士或博士學(xué)位者。滿足條件的學(xué)員全年均可向院校提交報名申請材料進(jìn)行報名,完成全部課程學(xué)習(xí)并通過考核可獲得結(jié)業(yè)證書;后期結(jié)業(yè)后可報名參加申碩考試,只考外國語和學(xué)科綜合2門,滿分均為100分,學(xué)員達(dá)到60分及格即可通過考試,學(xué)員通過考試并完成論文答辯后即可獲得碩士學(xué)位證書。
詳情>